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ABSTRACT

Estimating Credit Migration Matrices with Aggregate Data – Bayesian Approach

Abstract

This paper studies the Gibbs sampler developed in Rodri-
guez-Yam et al. (2004) that can be used to estimate the pa-
rameters of inequality constrained regression. The aim of the 
paper is twofold. First, to present an efficient estimation meth-
odology that has not yet been utilised in credit risk literature, 
and second, by using this method to estimate a migration ma-
trix governing the dynamics of loans to corporate sector in 
Croatia when only aggregate (supervisory) data on bank loans 
in every rating category is available. The results of the analy-
sis suggest that the Bayesian estimator used in this paper has 
some important comparative advantages over the estimators 
previously used in the literature.
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1.1 Preliminary discussion

The aim of the paper is twofold. Firstly, to present and test an efficient methodology to estimate the pa-
rameters of the inequality constrained regression that has not yet been used in credit risk literature. Secondly, 
by using this method to estimate a migration matrix governing dynamics of loans to corporate sector in Croa-
tia when only aggregate (supervisory) data on bank loans in every quality state (rating) is available. The em-
pirical analysis conducted in this paper therefore deals with the modelling of migration of bank loans between 
different quality classes. In particular, the central question to be answered is: what is the probability for a good 
loan to become a bad (or non performing) loan and vice versa?

Migration matrices are standardly used to describe the dynamics of a credit portfolio over time and are 
often seen as a useful tool when forecasting credit quality. In a case in which data on transition between rat-
ings for individual loans is available, the transition probabilities are easily calculated via maximum likelihood 
from relative frequencies of arrivals and departures for each rating. However, only aggregate time series of 
credit volume in each quality class, usually compiled by the regulator, is typically available. In that case, migra-
tion probabilities may be seen as transition probabilities of a first order, discrete time and discrete state space 
Markov chain which casts the estimation problem into the inequality constrained regression framework (Kel-
ton 1981, Lee et al. 1965, Rodriguez-Yam et al. 2004). Literature that exploits these minimal data require-
ments when estimating migration matrices is, however, not abundant. For example, Jones (2005) estimates 
transition matrices for the US bank loan portfolio using the Inequality Constrained Least Squares Estimator. 
The absence of any relevant asymptotic theory for this estimator and its boundary solutions complicates the 
inference. Transition probabilities are, for example, often estimated as zeros, which implies extreme conclu-
sions that may be misleading and hard to interpret. In order to circumvent the problems of the least squares 
estimates, Christodoulakis (2006) studies the same data set, but now using a different estimation strategy. 
The transition probabilities are estimated under Monte Carlo integration framework, as proposed by Kloek 
and van Dijk (1978) and Geweke (1986). Empirical results on the US portfolio of non-performing loan pro-
portions reported in Christodoulakis (2006) are in some cases close to the estimates of Jones (2005), but 
also exhibit some statistically significant differences regarding the estimated transition probabilities. However, 
sampling based on the Monte Carlo integration may be slow and inefficient. Christodoulakis (2006) does not 
report on performances of his sampler, but only that the inference is based on a large number of replications 
(100000).

This paper estimates transition probabilities for a typical loan to the corporate sector in Croatia. It builds 
on the work by Jones (2005) and Christodoulakis (2006) by employing an alternative, Bayesian, strategy when 
estimating transition probabilities between quality classes.

1 Introduction and motivation
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1.2 Inequality constrained regression

Under the assumption that credit quality of a typical loan obeys a first order Markov Chain, the related 
transition/migration matrix is estimated under the inequality constrained regression framework. For that rea-
son the estimation of this model is now discussed in more details.

In practice, econometricians often face the problem of estimating a linear regression model where some 
of the parameters are known to belong to a priori given intervals. The model is defined by a set of inequality 
restrictions imposed on the coefficients of the classical regression model and is referred to as the inequality 
constrained regression model. The prior knowledge about the parameters mainly relies on the requirements set 
by economic or statistical theory. Alternatively, inequality constraints just represent ad hoc restrictions, consid-
ered to be self-evident from the nature of the problem of interest.

The most common set of constraints met in practice are the sign restrictions imposed on the regression 
parameters. The theory often presumes the signs of marginal effects of individual regressors in the model. The 
signs of estimated coefficients, however, need not to be consistent with those anticipated by the theory. For ex-
ample, the sign inconsistency often arises due to highly correlated regressors that may mix individual effects in 
the model. As reported in Geweke (1986), procedures used to deal with this practical problem differ from one 
investigator to another. Typically, regressors that produce the wrong sign are simply dropped out of the specifi-
cation and only results based on specifications with all the expected signs are reported. However, such a prac-
tice may result in severely biased estimates and can lead to inefficient parameter estimates (Lovell and Prescott 
1970). On the other hand, simply dropping a variable out of the linear model is not always an available option, 
particularly in a case in which the underlying theoretical model originates from the probability theory. To il-
lustrate, it has been long recognised that the estimation of transition probabilities governing a discrete Markov 
Chain easily reduces to the problem of the estimation of an inequality constrained regression (Lee et al. 1965, 
MacRae 1977). Clearly, the elements in each row of the transition matrix must be non-negative, less or equal 
than one and need to sum up to unity. Exactly the same set of restrictions must therefore arise in the pertain-
ing regression.

Instead of searching for a set of explanatory variables that finally delivers parameters with expected signs, 
an alternative approach considers the estimation of a restricted model where all the parameters are forced to 
produce expected signs, or more generally, to satisfy given inequality constraints. Following this idea, Judge 
and Takayama (1966) solve a quadratic programme via the Dantzig-Cottle algorithm and minimise the residual 
sum of squares of a linear model under inequality restrictions on the parameters. In this way the Inequality 
Constrained Least Squares Estimator (ICLS) is obtained. There are several major problems related to this ap-
proach. The asymptotical properties of the ICLS are clear and well documented for several simple cases only 
and, accordingly, are not particularly useful in practice. The standard test for significance of coefficients based 
on Student distribution can be misleading (Lovell and Prescott 1970) and moments of the estimator are dif-
ficult to derive (Judge and Takayama 1966). From a more practical point of view, not all the standard econo-
metric software packages include built-in procedures that easily produce inequality constrained estimators. 
Finally, a solution obtained via quadratic programming typically lies on the boundary of the feasibility region 
and, hence, is often considered as being non-informative.

In order to circumvent the shortcomings of the ICLS estimator, the problem has also been approached 
from a Bayesian perspective. Early theoretical work includes O’Hagan (1973), Davis (1978) and Chamber-
lain and Leamer (1976). However, only after the popularisation of computationally demanding Monte Carlo 
methods during the 1980s and 1990s did Bayesian inequality constrained estimators become relevant for prac-
titioners. Building on the previous work by Kloek and van Dijk (1978), Geweke (1986) draws a sample from 
posterior distributions of inequality constrained regression parameters using the Monte Carlo integration. 
However, the methodology proved to be inefficient and slow to the point of impracticality in a case in which 
the parameter space has a small constrained region and/or the number of parameters to be estimated is large 
(Geweke 1996). The Gibbs sampler aimed to simulate from posterior for inequality constrained regression 
parameters was first presented in Geweke (1996). The prior distributions used were diffuse priors that are 
standardly used in linear Bayesian models, but now constrained in order to reflect the prior knowledge about 
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parameters. Posterior distribution for coefficients in this case takes on the form of truncated multivariate nor-
mal distribution and the problem of sampling from the posterior collapses to sampling from truncated normal 
distribution. Sampling from multivariate truncated distributions, however, is not a trivial task, except for low 
dimensions. For that purpose, Geweke uses a methodology described in Hajivassiliou and McFadden (1990), 
Hajivassiliou, McFadden, and Ruud (1990) and Geweke (1991). Although Geweke’s sampler is suitable for 
solving a broad class of problems, many drawbacks remain. Most importantly, the number of restrictions that 
can be imposed on regression coefficients must not exceed the overall number of parameters to be estimated. 
Moreover, restrictions need to be linearly independent. For example, these shortcomings do not allow one to 
apply this sampler when estimating transition probabilities of a Markov Chain under a constrained regression 
framework. In addition, Geweke’s sampler produces highly autocorrelated draws and mixes poorly, i.e. ex-
plores the posterior distribution inefficiently. Of course, posterior draws from a Gibbs sampler are realisations 
of a Markov Chain and, as such, are correlated by definition. Still, the problem here is serious and causes slow 
convergence toward the posterior distribution.

Finally, the Gibbs sampler constructed in Rodriguez-Yam, Davis and Scharf (2004) overcomes the prob-
lems that characterise earlier specifications. The authors illustrate that their sampler can incorporate more 
restrictions than Geweke’s (1996), it mixes better, produces less correlated draws and converges toward pos-
terior distribution faster than competitive implementations. For this reason, this paper studies the sampler of 
Rodriguez-Yam, Davis and Scharf (2004) in more detail.

The estimation strategy adopted here relies on Rodriguez-Yam et al. (2004). Probabilities of migration 
between quality classes for Croatian banks’ loan portfolios are estimated efficiently via the Gibbs sampler, 
where the convergence of Bayesian estimators is achieved after less than 10000 iterations. In addition, esti-
mated probabilities lie well within the truncation area producing estimates that have clear interpretation.

The rest of the paper is structured as follows. The following section illustrates how one can estimate a 
credit migration matrix with aggregate data. After that, the third section lays out technical details on the sam-
pler I rely on throughout the paper. In order to be able to judge the reliability of the estimator used in this pa-
per the fourth section additionally compares its properties with those of the OLS and ICLS in a simple Monte 
Carlo experiment. The fifth section reports the estimation results and the final section concludes.

2 Estimating credit migration matrices with aggregate data

This section demonstrates how and under what conditions the estimation of transition probabilities gov-
erning a discrete Markov chain reduces to the estimation of an inequality constrained regression.

As a part of the risk management process, financial institutions often construct simple econometric mod-
els in order to summarise past behaviour of various financial indicators. Hopefully, such information will be 
useful for forecasting and, consequently, may provide individual institutions, as well as their regulators, with 
an important input while they are managing credit risk.

The basic building block of many credit risk models is the migration matrix of a loan portfolio. Its pur-
pose is to summarise the probabilities of the migration of loans in a portfolio between different ratings. For 
example, it is naturally of interest to risk managers to estimate the probability of a good (performing) loan to 
become a bad (non-performing) loan or vice versa. In a case in which the mechanism underlying migration 
between ratings remains similar in the following periods, migration matrices are a powerful tool for the predic-
tion of bank losses.
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2.1 Transition matrix of a Markov chain under regression framework

Often, it is assumed that the transition of loans between different ratings obeys a discrete Markov chain 
process. When only aggregate data on the proportions of loans in every risk category is available, the direct 
calculation of transition probabilities is not possible and the problem of estimation the migration matrix is cast 
into the inequality constrained regression framework (Lee et al. 1965, Rodriguez-Yam et al. 2004) as fol-
lows.

Let , ,S S Sk1 f= " , denote the discrete state space (of loan ratings) of a time homogenous1 Markov 
chain , ,X X X0 1 f= " ,. The problem of interest here is that of the estimation of the transition probabilities be-
tween the states summarised by k × k matrix P such that:

P p P X S X S
, ,ij i j
k

t j t i i j
k

1 1 1= = = =
= - =

^ h6 6@ @ .

The estimation strategy depends on the nature of the available data. In cases when the outcomes of the chain 
X are observed directly, transition probabilities are easily obtained via maximum likelihood as (see Lee et al. 
1968):

P p
n

n
,

,

ML ij i j
k

ij
j

k
ij

i j

k

1

1 1

= =
=

= =

t6
>

@
H/

,

where nij denotes the number of observed migration from state i to state j. We refer to this approach as to the 
micro-data estimation. More often, the outcomes of the chain are not observable directly, but only the aggre-
gate number of units in each state of the chain over time. These units are assumed to be mutually independent 
and follow the same Markov process with transition matrix P. Individual transitions are not observed in this 
macro-data case and a different estimation strategy has to be adopted.

For that purpose, let us first evaluate the joint probability for two sequential realisations of a chain

 ,P X S X S P X S P X S X S P X S pt i t j t i t j t i t i ij1 1 1 1= = = = = = = =- - - -^ ^ ^ ^h h h h . (1)

The unconditional probability for the chain at time t to be in state j is now:

 ,P X S P X S X S P X S pt j t i t j
i

k

t i
i

k

ij1
1

1
1

= = = = = =-

=

-

=

^ ^ ^h h h/ / . (2)

In practice, probabilities P X St j=^ h are estimated as the proportions of units being in state j at time t, denoted 
yjt. Clearly, these proportions are easily obtained from the aggregate data set (macro data), even though the 
outcomes of the underlying chain are not observed. As a consequence, the sample counterpart of (2) casts into 
the inequality constrained regression framework with the following specification to be estimated:

 y y pjt it ij jt
i

k

1
1

f= +-

=

/ , (3)

imposing
 p 1ij

j

k

1
=

=

/  for all i (4)

 p 0ij $  for all i, j, (5)

where i = 1,...,k are states of a Markov chain (i.e. possible ratings of a loan), and yjt is the proportion of loans 
of quality j at time t. Moreover, a single absorbing (terminal) state induces additional k restrictions:

1 Time homogeneity of a chain reflects the fact that transition probabilities do not vary over time.
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 p 1kk =  and 0p p pk k kk1 2 1f= = = =- . (6)

Equality constraints are included into the specification in a standard way. Plugging (4) into (3) and as-
suming a single absorbing state (6) yields the reduced model which can be estimated via the inequality con-
strained estimator. However, equality constraints here impose cross-equation restrictions onto regression pa-
rameters in (3) and, accordingly, regressions for all j need to be estimated simultaneously. For our purpose, it 
is sufficient to illustrate the procedure for a four-state chain (i.e. k = 4 with a single absorbing state.

Let us consider a set of equations (3) under (6) but now stacked as follows:

y
y
y
y

X
X
X
X

p
p
p
p

0
0
0

0

0
0

0
0

0

0
0
0

1

2

3

4

1

2

3

4

f

D

= +

J

L

K
K
K
KK

J

L

K
K
K
KK

J

L

K
K
K
KK

N

P

O
O
O
OO

N

P

O
O
O
OO

N

P

O
O
O
OO

,

where , ,y y yj j jT2 f= x
^ h , X is common matrix of regressors from (3), pj denote columns of transition matrix, 

D is standard differencing operator and ,N I0 2+f v^ h is error term.2

In order to proceed with the estimation, let us partition this stacked matrix of regressors in four 
parts:

, ,X

X

X
X

X X
0
0
0

0

0
0

0
0

0

1 2 3= = =

J

L

K
K
K
KK

J

L

K
K
K
KK

J

L

K
K
K
KK

N

P

O
O
O
OO

N

P

O
O
O
OO

N

P

O
O
O
OO

 and X

X

0
0
04 =

J

L

K
K
K
KK

N

P

O
O
O
OO

.

Now, for all i we can rewrite (4) as:

 p p p p1i i i i4 1 2 3= - - - , (7)

or p p p p14 1 2 3= - - -  in matrix notation, which yields:

 

y
y
y
y

X X X X

p
p
p

p p p

X p X p X p X p p p

1

1

1

2

3

4

1 2 3 4

1

2

3

1 2 3

1 1 2 2 3 3 4 1 2 3f f

D

=

- - -

+ = + + + - - - +

J

L

K
K
K
KK

J

L

K
K
K
KK

^ ^

N

P

O
O
O
OO

N

P

O
O
O
OO

h h .

Finally, we have

 

y
y
y
y

X X X p X X p X X p

1
1
1
1

1

2

3

4

4 1 4 1 2 4 2 3 4 3 f

D

- = - + - + - +

J

L

K
K
K
KK

J

L

K
K
K
KK

^ ^ ^

N

P

O
O
O
OO

N

P

O
O
O
OO

h h h  (8)

which is an equation that can be estimated under the inequality constrained framework by imposing:

 p 0ij $ , for i = 1,2,3 and j = 1,2,3 (9)

 p p p 1i i i1 2 3 #+ + , for i = 1,2,3. (10)

2 The fact that we are dealing with proportions data implies a non-zero contemporaneous correlation between the error terms across equations. Indeed, 

adding up both sides in y y pjt it ij jt
i

K

1
1

f= +-

=

/  over j = 1,2,3,4 taking into account the constraints on the transition probabilities as well as 1yjt
j 1

4

=
=

/  reveals 

the link between errors as 0jt
j 1

4

f =
=

/  for all t. As a consequence, the least squares yield unbiased and consistent (Lee, Judge and Zellner 1970), but not 

efficient estimates of transition probabilities. Because of that, MacRae (1977) proposes an iterative GLS estimator. Finally, Kelton (1981) shows the 
equivalence of the GLS and least squares estimators under mild conditions. The main purpose of this example is to compare the estimates based on the 
sampler from Rodriguez-Yam, Davis and Scharf (2004) with more conventional solutions obtained via OLS and ICLS and, therefore, despite the non-
optimality of the choice, the covariance matrix is assumed to be diagonal, i.e. ,N I0 2+f v^ h .
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As noted in Rodriguez-Yam et al. (2004), the number of restrictions imposed here is greater than the 
number of parameters to be estimated and, therefore, the alternative Gibbs sampler (Geweke 1996) is not an 
appropriate estimation method.

3  Bayesian estimation of inequality constrained 
regression

This section presents the Bayesian estimator for the inequality constrained linear regression proposed by 
Rodriguez-Yam, Davis and Scharf (2004). This sampler, based on posterior draws simulated via Gibbs sam-
pler, overcomes the main problems of the earlier specifications. The authors illustrate that their sampler can 
easily incorporate a large number of, possibly, collinear restrictions, it mixes better, produces less correlated 
draws and converges toward posterior distribution faster than competitive Bayesian implementations. In con-
trast to that, the non-Bayesian or classical approach appears to be problematic due to the absence of any rel-
evant asymptotic theory for inequality constrained estimators. Moreover, the boundary solutions produced in 
this way may be seriously misleading.

Bayesian normal linear regression model standardly assumes the normal prior for regression coefficient 
and, consequently, due to the form of the likelihood function, the posterior appears to be normally distributed 
as well. The same applies for constrained regression, but now with an important difference. The prior knowl-
edge about the coefficients is built into the model by using the truncated normal distribution as the prior and, 
consequently, the posterior is again from the truncated normal distribution. In contrast to the unrestricted 
case, theoretical moments of restricted Gaussian distribution are generally not derived easily and, thus, MCMC 
methods are used to sample from the posterior. Still, as mentioned before, sampling from truncated multivari-
ate distribution is not a trivial task either and the estimator for the constrained regression model presented in 
Rodriguez-Yam, Davis and Scharf (2004) is, in fact, an application of an efficient Gibbs sampler from the 
truncated normal distribution.

The following section firstly presents the Gibbs sampler for truncated normal distribution and, after that, 
illustrates how the sampler fits naturally into inequality constrained regression framework.

3.1  Sampling from truncated normal distribution

A truncated normal vector is formally defined in the following definition (Rodriguez-Yam, Davis and 
Scharf 2004).

Definition 1 (Truncated normal vector) If R is a subset of Rk  having positive Lebesgue measure, we 
call the random k-vector Y truncated normal and write ,Y NR+ n R^ h if its probability density function is pro-
portional to ; ,f x I xRn R^ ^h h, where ; ,f x n R^ h is the k-variate normal density with mean n and covariance ma-
trix R, and I xR^ h is the indicator function for R.

The Gibbs algorithm for truncated normal distribution relies on some good properties that character-
ise linear transformations and conditional distributions of the unconstrained normal vector, also inherited by 
constrained vector. These standard results ensure that a linear transformation of a constrained normal vector 
is normally distributed as well, and, also, the normality of univariate conditionals is guaranteed. Recalling that 
the Gibbs sampler draws rely on the sampling from conditional distributions, the importance of these results 
becomes apparent. More formally, these results can be stated in form of the two propositions (see appen-
dix).

The final objective here is to simulate a random sample from a vector
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,X NT 2+ n v R^ h, where :T x Bx bRk! #= # -.

In contrast to similar applications, matrix B is allowed to have collinear rows here, i.e. inequality constraints do 
not need to be linearly independent. Let A be a square matrix of full rank, such that

 A A IkR =x  (11)

and let Z = AX be a linear transformation of X. Proposition 1 (see appendix) and (11) imply the distribution 
of Z:

 , ,Z N A A A N A I2S S k
2 2+ n v n vR = =x^ ^ ^h h h, where : &S Ax x Bx bRk! #= " ,. (12)

The area S may be rewritten as

 :S z Dz bRk! #= " ,, where D BA 1= - . (13)

The purpose of the transformation of vector X in (12) is the simplification of covariance matrix. As a conse-
quence, all the univariate conditionals needed to implement one round of the Gibbs sampler are defined fully 
provided n and v. What remains is to deal with truncation sets for univariate conditional distribution of vector 
Z. For that purpose, let us define:

, , , , , ,A Z Z Z Z Zj j j j k1 1f fa n= =- - +^ h and , , , , ,z z z z zj j j k1 1 1f f=- - +^ h,

Z j-  denoting vector Z with its jth component excluded and z j-  is a real vector in Rk . Proposition 2 implies 
that:

 ,Z Z z Nj j j S j
2

j+ a v=- -^ ^h h, (14)

where

: :S z z S z Dz bR Rj j j! ! ! #= =" ", ,.

Let D = (d1,...,dk) be the column representation of D and D–j a matrix when jth column is deleted from D. 
Now, the set Sj may be conveniently rewritten as

 :S z d z b D zRj j j j j j! #= - - -" ,. (15)

All the objects D–j, z–j, dj and b are known and, therefore, due to convexity of truncation area, the boundaries 
of Sj may be found from the set of linear inequalities d z b D zj j j j# - - - . After deriving the boundaries of Sj in 
(15), one can easily sample from univariate conditionals Z Z zj j j=- -^ h given in (14). Although the algorithm 
provides a draw from transformed vector Z = AX, premultiplying this with the matrix A–1 yields a draw from X. 
The entire procedure is easily implemented by following the steps of the algorithm:

Algorithm (Gibbs sampler for truncated multivariate normal vector)

1. Initialise the chain with z S0 ! . Suppose that in t-th step we have , ,z z z( ) ( ) ( )t
j
t

k
tf= ^ h

2. Simulate z ( )
j
t 1+  from , , , , ,f z z z z z( ) ( ) ( ) ( )

j
t

j
t

j
t

k
t

1
1

1
1

1f f+
-
+

+^ h, for j = 1,...,k

3. Undo the linear transformation: X A z( ) ( )t t1 1 1=+ - + .
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3 A random variable X is said to be inverse-gamma distributed with parameters a and b, ,X IG a b+ ^ h , if X
1  is gamma distributed with parameters a and b.

3.2 G ibbs sampler for inequality constrained regression

This section introduces the Gibbs sampler aimed at simulating from the posterior distribution of param-
eters of the inequality constrained regression. Simulation from the posterior of the regression coefficients re-
duces to simulating from truncated normal distribution. For that purpose, the Gibbs scheme introduced in the 
previous section is utilised.

The basic model we consider is a k-variate regression, where regression coefficients need to satisfy a set 
of linear inequality constraints. In matrix form we write this inequality constrained regression as follows

Y Xb f= + , such that B b#b ,

where ,N I0 n
2+f v^ h is a standard noise vector B denotes a known l × k matrix of constraints, where l is al-

lowed to be greater than k and b is a known k-vector. Inequality constraints define a set:

:T B bRk! #b b= " ,.

The set of parameters to be estimated includes regression coefficients b and noise variance v. Jointly they 
form a k+1-vector:

,i b v= ^ h.

The estimation framework is a Bayesian and, therefore, the model is defined fully by defining the prior 
distribution for i. A standard choice for Bayesian linear models is to set a normal prior for b and an inverse-
gamma3 prior for v.

 , ( )N X XT 0 0
2 1+b n v x -

^ h (16)

 ,IG2 +v o m^ h, (17)

where v0, o and m denote known scalars and n0 a known vector. Suppose in addition that b and v are in-
dependent. The prior knowledge about the coefficients is built into the model by using the truncated normal 
distribution as the prior and, consequently, the posterior is again from the truncated normal distribution. In 
contrast to the unrestricted case, the moments from restricted Gaussian distribution are generally not derived 
easily and, thus, MCMC methods are used to sample from the posterior.

In order to derive the posterior for i = (b,v)we use the Bayes theorem:

 ,
, ,

, , ,f y f y
f y f

f y f L y f f2

2 2
2 2 2 2\b v

b v b v
b v b v b v b v= =^

^

^ ^
^ ^ ^ ^ ^h

h

h h
h h h h h. (18)

where ,L y2b v^ h is the standard Gaussian likelihood function:

 , 2 /2expL y y X y X2
n

2 2 2b v rv b b v= - - -x-
^ ^ ^ ^h h h h" ,. (19)

Now, using expressions (16), (17), (18) and (19) the following posteriors can be derived:

 , ,y NT2
1 1+b v n R^ ^h h (20)

 , ( ) 2y SS x2
n

1 1
2

2+v b b m+ o
- - -

+^ ^h h , (21)
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where:
 11 0n cb c n= + -t ^ h  (22)

 X X1
2 1v cR = x -
^ h  (23)

 ( )SS y X y Xb b b= - -x
^ ^h h (24)

 /0
2

0
2 2c v v v= +^ h (25)

 X X X y1b = x x-t ^ h . (26)

While normal posterior for b is a standard result in literature, the xn 2
2

o+  posterior for variance may be less obvi-
ous to derive (see appendix).

Vector 11 0n cb c n= + -t ^ h  is a convex combination of the prior parameter n0 and the OLS estimator 
bt . How much weight is attached to individual vector n0 or bt  depends on the uncertainty on the prior reflected 
in /0

2
0
2 2c v v v= +^ h. For example, if there is a high level of certainty about the prior distribution, variance of 

the prior will be smaller, i.e. constant 0
2v  will be small. As a consequence, c will be closer to zero and the con-

vex combination n1 thus closer to n0.
In a case in which the OLS estimator satisfies all the constraints, it is equal to the ICLS. Moreover, if the 

prior parameter n0 is set to be the ICLS, i.e. to the OLS now, it follows that 11 0n cb c n b= + - =t t^ h , and 
posterior takes on the form , ,y NT2

1+b v b Rt^ ^h h. As a consequence, the Bayesian point estimator will be 
close to the OLS.

In order to sample a draw from the posterior, in every round of the algorithm a k-vector from truncated 
multivariate distribution and a single value from xn 2

2
o+  distribution are to be simulated. For that purpose, the 

strategy introduced in the previous section is adopted. Let A be a regular matrix such that A X X A Ik1 =x x-
^ h . 

In addition, let us transform the vector b using the convenient linear transformation

Ah b= .

Now using proposition 2 and the previous discussion it follows that

, , ( ) ,y N A A X X A N A IS S k
2

1
2 1

1
2+h v n c n v cv =x x-^ ^ ^h h h

where
 :S D bRk! #h h= " ,, where D BA 1= - . (27)

The Gibbs sampler is now easily implemented using the following algorithm.

Algorithm (Gibbs sampler for inequality constrained regression)

1. Initialise the chain with , , ,( ) ( ) ( ) ( )
k

0
1
0 0 2 0fi h h v= ^ h. Suppose that ( )ti  is the last simulated value.

2. Value , , ,( ) ( ) ( ) ( )t t
k
t t1

1
1 1 2 1fi h h v=+ + + +

^ h

• simulate ( )t
1

1h +  from , , , , ,f y( ) ( ) ( ) ( )t t
k
t t

1 2 3
2fh h h h v^ h,

• simulate ( )t
2

1h +  from , , , , ,f y( ) ( ) ( ) ( )t t
k
t t

2 1
1

3
2fh h h h v+

^ h

h

• simulate ( )t2 1v +  from , , , , )f y( ) ( ) ( ) ( )t t t
k
t2

1
1

2
1 1fv h h h+ + +^ h .

3. Undo linear transformation: A( ) ( )t t2 1 1b h=+ - +

4. Repeat procedure for ( )t 2i + , ( )t 3i + ,...
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To summarise, an efficient method for sampling from posterior distribution of the parameters of inequal-
ity constrained regression is described in detail. The simulation is based on the Gibbs sampler which generates 
a Markov chain that converges in distribution towards posterior distribution and, accordingly, the simulated 
sequence approximates a random draw from posterior.

4 M icro vs macro-data estimation – simulated example

Often, only aggregate or macro data on proportions of visits to each state is available. In that case, the 
fact that estimated probabilities represent the migration probabilities of individual, independent micro-units, 
included in the macro sample, raises a question of the reliability of the estimated parameters. In practice, when 
micro-data is available, transition probabilities should always be estimated via maximum likelihood. On the 
other hand, when only aggregate data is available, it is difficult to reveal to what extent the estimates obtained 
via regression methods resemble structural transition probabilities, underlying the dynamics of micro-units. In 
order to address this issue a simple Monte Carlo experiment is conducted.

Using an arbitrary transition matrix:

.

.

.

.

.

.

.

.

.

P
0 90
0 2
0 03

0 05
0 4
0 02

0 05
0 4
0 95

= f p,

five independent chains of length n are simulated.4 After that, from simulated micro-data, the time series of 
proportions of units in every state are derived in order to compare the estimates of transition probabilities 
based on macro and micro data. Table 1 compares the estimates obtained with different approaches. Finally, in 
order to illustrate the sensitivity of the estimates on the length of the series used, the exercise is conducted both 
for n = 100 and n = 10000.

4 In case when the OLS satisfies all the inequality constraints, it is equivalent to the ICLS and very similar to the Bayesian estimates. The purpose of this 
example is to illustrate the performance of different estimators in case when OLS is not consistent with the imposed constraints. Therefore, the first three 
simulated series that result with the OLS estimator with all the constraints satisfied were discarded and only the fourth trial that produced problematic 
OLS estimates is reported here.

Table 1 Transition probabilities

N = 10000 N = 100

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

MLE  0.90  0.05  0.05  0.90  0.06  0.04

OLS  0.90  0.05  0.05  0.87  0.05  0.08

ICLS i = 1  0.90  0.05  0.05  0.87  0.05  0.08

Bayes  0.90  0.05  0.05  0.87  0.05  0.08

MLE  0.21  0.39  0.40  0.05  0.38  0.57

OLS  0.21  0.39  0.40  –0.10  0.39  0.71

ICLS i = 2  0.21  0.39  0.40  0.00  0.34  0.66

Bayes  0.21  0.39  0.40  0.05  0.31  0.64

MLE  0.03  0.02  0.95  0.03  0.01  0.96

OLS  0.03  0.02  0.95  0.06  0.02  0.92

ICLS i = 3  0.03  0.02  0.95  0.05  0.02  0.93

Bayes  0.03  0.02  0.95  0.05  0.02  0.93
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As expected, given a large number of simulated realisations of the chain, i.e. n = 10000, all the estimates 
resemble the true transition probabilities very well. Moreover, all estimation methods produce probabilities 
that are equal, up to the second decimal place and regression methods based on the macro data are just as 
good as a micro-based maximum likelihood estimator. For our purpose, however, more interesting results are 
produced for n = 100, which is a number of observations to be expected in practice. In contrast to the large 
sample case, most of the estimates depart more strongly from true probabilities here. The maximum likelihood 
method, exploiting the micro-data, yields the most precise estimates in general. Regarding the regression es-
timators, the OLS produced one negative estimate and accordingly, the same probability is estimated as zero 
using the ICLS. The Bayesian posterior mean estimator produces the positive value here. On the other hand, 
the OLS and ICLS produce better estimates for p22 compared to the Bayesian estimator. Beside this, all the re-
gression methods produce similar estimates for the remaining parameters.

In order to be able to judge the ability of individual estimators to mimic the true matrix of transitions 
P, an appropriate distance measure between matrices is to be applied. For that purpose, the standard matrix 
2-norm can be used. According to this distance criterion, the maximum likelihood estimator of matrix P is the 
closest to the true matrix, with an estimated distance of 0.23. After that, the Bayesian estimator is second best 
with the distance of 0.3, and the ICLS and OLS are somewhat worse with distances of 0.34 and 0.44, respec-
tively.

5  Results

5.1  Transition probabilities for Croatian bank loan portfolio

This section presents Bayesian estimates of transition matrix underlying the dynamics of loans extended 
to domestic firms for the period 1999q2 – 2011q2. The properties of Bayesian estimates are finally compared 
with those of more conventional estimates obtained via the OLS and ICLS estimators. Only the data on ag-
gregate volumes in every risk category is available. Quarterly series of aggregate loans are classified into four 
broad risk categories, depending on the possibility of collection, i.e. on the expected future cash flows (CNB 
2009, Cerovac and Ivičić 2009):

A – placements for which no evidence of impairment is identified on an individual basis
B –  placements for which evidence of partial impairment is identified, i.e. partly recoverable place-

ments
C –  placements for which evidence of impairment is identified, equal to their carrying amount, i.e. fully 

irrecoverable placements (delinquent)
D – cumulative charge-offs on loans. This is defined an absorbing risk category5

Debtors’ timeliness in meeting their obligations to a credit institution is an important criterion integrated 
in the above classification scheme and implies a downgrade from A to B if a debtor has overdue liabilities for 
more than 90 to 365 days, and from B to C if a debtor has overdue liabilities for more than 365 days. For more 
details on classification of loans see CNB (2009).

Migrations between classes A, B, C and D are modelled as a trajectory of a discrete-time, four-state 
Markov chain by using the data on proportions of loans in every state, as shown in the previous section. Tran-
sition probabilities of a chain, i.e. migration probabilities of the loan portfolio are estimated using the draws 
produced by the Gibbs sampler under the inequality constrained regression framework.

5 The analysis was also conducted for the three-states chain, omitting the absorbing state. Due to the low proportion of loans in charge-off category in our 
sample, the results were not altered significantly in that case. Another robustness check concerns the stationarity of the underlying Markov chain. There 
was a major change in the classification methodology in 2003. For that reason, the analysis was also conducted ignoring the period before the break. 
Again, the main results proved to be robust to the change of sample.
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In order to start the sampler, the parameters of the prior distribution and an initial value of the chain 
need to be specified. Motivated by Rodriguez-Yam et al. (2004), I define the prior parameter n0 as the con-
strained least squares estimator, obtained via quadratic programming.6 Moreover, the scaling constant of the 
prior covariance matrix v0 should be large enough; here it is 100, in order to reflect the high prior uncertainty 
about the coefficients. Finally, the parameters of the prior for the noise variance should also reflect a lack of 
prior information and are set to7 o = m = 0.01. After defining the priors, 10000 draws from the posterior con-
ditionals for six regression coefficients and noise variance are produced. The draws for remaining coefficients 
are calculated directly from equality constraints (6). The Bayesian estimator used here is the standard posterior 
mean estimator, that is, sample average of posterior draws.

5.2 Estimation results

Table 2 compares the estimates of transition probabilities of Croatian banks loans to the corporate sector, 
obtained by the ordinary least squares, OLS (i.e. by ignoring constraints), the constrained least squares esti-
mator, ICLS (obtained via quadratic programming) and the Bayesian estimator.

6 See Byrd et al. (1995) and Coleman and Li (1996).

7 It can be shown that the inverse-gamma prior, ,IG f f^ h  for variance v2 converges towards the uniform prior for log log 2v  when 0"f . Therefore, set-
ting f to be small attaches similar densities to all the values from support of the prior which reflects the prior uncertainty about the variance.

8 The rows of transition matrix, however, do sum up to unity by construction.

Table 2 One-quarter transition probabilities, OLS, 
ICLS and Bayesian estimates (in percentages)

j = A j = B j = C j = D

OLS  100.04  0.05  –0.08  –0.01

ICLS i = A  99.74  0.23  0.03  0

Bayes 99.45 0.28 0.19  0.08

OLS  –16.04  112.42  5.13  –1.51

ICLS i = B  0.00  96.55  3.45  0

Bayes 2.87 91.7 4.43  1

OLS  34.18  –26.41  88.94  3.29

ICLS i = C  10.69  0.00  89.31  0

Bayes  9.74 6.05 82.16 2.05

OLS  0  0  0  100

ICLS i = D  0  0  0  100

Bayes  0  0  0  100

As expected, the OLS estimates do not satisfy the imposed inequality constraints and some of the esti-
mates are greater than unity or smaller than zero.8 On the other hand, by their construction, both the ICLS 
and Bayesian estimates satisfy all the constraints. However, there are some differences between them. For ex-
ample, the ICLS has tendency to produce estimates close to the boundary. The estimated probabilities thus 
reveal an unattractive property of the ICLS estimator, in that it often produces uninformative corner solutions. 
Besides that, the absence of any relevant asymptotic theory for the ICLS makes inference about the reliability 
of the parameters difficult.

Bayesian estimates, on the other hand, are acceptable and easy to interpret. The A-rated loans mostly stay 
in the same class in the next quarter as well, with the high probability of 0.99. Dynamics of B and C rated loans 
has not shown such a persistence during recent years. For example, B-rated loans proceed with downgrading 
to C with a probability of less than 5%. The upgrading probabilities are rather low, less than 3%. On the other 
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hand, the constrained estimator predicts zero probability for a B-loan to recover fully and become A again. The 
loans with the lowest rating C are charged-off with a probability of 2% and the estimated transition probabili-
ties suggest that rating C is not the final (absorbing) state of a typical loan. Again, the constrained estimator 
predicts zero probability for a C-loan to be charged-off.
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Figure 1 Posterior histograms of full conditionals for regression coefficients. The graph in the row i and column j 
represents the density of                                     . Vertical lines represent the estimates for 0.025 and 0.975 
quantiles and posterior mean.

Figure 1 shows the estimated densities for conditional posterior distributions of regression coefficients 
together with the Bayesian 95% credible intervals. In the classical approach, the boundaries of confidence in-
tervals and not the parameters are random quantities. As a consequence, one cannot conclude that there is, 
say, 0.95 probability for a parameter to lie within the 0.95 confidence interval, given the data. Rather, the con-
fidence interval includes the given value with 0.95 probability, before one has even seen the data. In contrast 
to that, Bayesian credible intervals allow one to construct intervals such that the probability for a (random) pa-
rameter to lie within this interval is 0.95. Estimated histograms illustrate the effect of the truncation and some 
of the conditionals are characterised by well skewed empirical distributions.

In order to study the speed of convergence of our sampler towards the stationary distribution, it is also 
useful to compare the running means of posterior draws for transition probabilities with the means calculated 
over the whole sample (see appendix).
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6 Conclusion

In this paper I studied the Gibbs sampler for the parameters of the inequality constrained regression pro-
posed by Rodriguez-Yam et al. (2004). The methodology was applied to the problem of the estimation of the 
migration probabilities between different rating categories for loans in the portfolios of Croatian banks. The 
analysis is conducted for loans to the corporate sector. It is assumed that each unit in the portfolio obeys a 
discrete Markov chain process. In that case, migration probabilities may be estimated under the inequality con-
strained regression framework, even though only the data on the proportions of loans in every rating class is 
available. The main findings of the paper may be summarised as follows.

Bayesian estimates based on the Gibbs sampler are acceptable and easy to interpret. The loans with the 
highest quality mostly stay in the same class in the next quarter as well, with a probability of 0.99. In other 
words, the A rating has been nearly the absorbing state for a typical loan in Croatia during the past decade. On 
the other hand, B and C rated loans have not shown such a persistence during the last ten years. For example, 
B-rated loans proceed with their downgrading to C with a probability of less than 5%. The probabilities of up-
grading are rather low, less than 3%. The loans with the lowest rating C are charged-off with a probability of 
2% and the estimated transition probabilities suggest that rating C is not the final (absorbing) state of a typical 
loan.

In contrast to Bayesian estimates, the standardly used least squares appear to be more problematic. The 
ordinary least squares estimates do not satisfy inequality restrictions and, therefore, cannot be interpreted as 
transition probabilities. On the other hand, inequality constrained least squares by their construction do satisfy 
all the restrictions, but show a tendency to produce boundary solutions which makes them hard to interpret. 
For example, the constrained estimator predicts zero probability for a B-loan to recover fully and become A 
again. Similarly, the constrained estimator predicts zero probability for a C-loan to be charged-off. Although 
the micro-data on individual loans is not available and, accordingly, this particular transition cannot be ob-
served directly, it is unlikely that such events have not been recorded in the past decade.

This analysis deals with supervisory, aggregate, data on proportions only and, hence, it is difficult to 
judge how well the obtained estimates resemble the underlying structural transition probabilities. In order to 
investigate this issue in more detail, an illustrative example based on the simulated paths of the micro-units is 
considered. If the time dimension is not very large (n=100), regression estimates based on the aggregate data 
may depart significantly from the true probabilities. However, both the Bayesian estimates and the estimates 
obtained by constrained linear squares approximate the true transitions well. As expected, the maximum likeli-
hood estimates based on the micro data produce the estimates with the highest precision and should always be 
used when micro data is available. Using the matrix norm as a distance measure, Bayesian estimates appear 
to be somewhat closer to the true parameters than the inequality constrained estimates. The OLS, again, per-
forms poorly.

Regarding the characteristics of the implemented sampler, the posterior sample has a quickly decay-
ing autocorrelation function (appendix). As a consequence, posterior means converge very fast and simulated 
draws explore posterior distribution efficiently. The convergence is mostly achieved after only around 1000 it-
erations, which is considerably faster than with alternative specifications, where tens or hundreds of thousands 
of iterations are needed. Moreover, the specification easily handles a large number of, potentially collinear, 
restrictions. This is a property that enables the estimation of transition probabilities of a discrete Markov chain 
and does not characterise alternative Gibbs sampler for constrained regression (Geweke 1996).

This analysis additionally confirmed all the good properties that characterise the sampler proposed by 
Rodriguez-Yam et al. (2004). The results obtained here suggest that estimates based on this sampler should be 
considered as an alternative to standard methods when estimating Markov transition matrices in practice.
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Appendix

Posterior distribution for noise variance

In order to show (21) let us note that the prior for v2 implies:
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and comparing this with inverse-gamma density we have:
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Moreover, the characteristic function of gamma density is given by:
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Recalling that gamma distribution G(n/2,2) is equal to ( )n2|  by definition, it follows immediately:
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Finally, using the Uniqueness Theorem for Characteristic Functions (Feller 1971), random variables 
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be shown as well.

Properties of the truncated normal distribution

Proposition 1 Let ,X NR+ n R^ h where R Rk!  has positive Lebesque measure and R the positive definite. 
Let :Y AX= , where A is r × k matrix with r k# . Then ,Y N A A AT+ n R x^ h, where : :T Ax x R!= " ,.

Proposition 2 Let us partition X, n, R in the following way

, ,X
X
Xk k kk

1 1 11

1

1
n

n

n v
R

R
R

R
= = =

x
e e eo o o

where Xk is the univariate components of X. Then the univariate conditionals take on the form:

,X X x N * *
k R k kk1 1 k+ n v=^ ^h h,
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where

x*
k k 1 11

1
1 1n n nR R= + -x - ^ h

*
kk kk 1 11

1
1v v R R R= - x - ,

for new constrained set:

: : ,R x R x x Rk k k1! != ^ h" ,.

Bayesian statistics

Standardly, the model’s parameters are estimated via maximum likelihood methods and method of mo-
ments. Under the classical framework, the parameter is seen as a fixed, albeit unknown variable. The prior be-
liefs about the parameters to be estimated are irrelevant for the estimation process. On the other hand, Bayes-
ian inference is based on a different idea. Here, the parameter is seen as a random variable with two distribu-
tions of interest. First is the prior distribution and reflects our knowledge on the parameter even before the data 
is gathered and, second, the posterior distribution that is conditional on observed data. The prior and posterior 
relate to each other via the Bayes theorem as follows:

 f f
f f

f fBayes theoremD
D

D
D\b

b b
b b= =^

^

^ ^
^ ^h

h

h h
h h, (28)

where b denotes (random) parameter of interest, D  is the data, f b^ h is the prior, f Db^ h is the posterior 
and f LD Db b=^ ^h h is the likelihood function of a model. In contrast to standard estimation strategies, 
under the Bayesian framework, both the prior knowledge about the parameter (the prior) as well as the sample 
information (the likelihood function) are used to make inferences about the parameter of interest. However, 
although the possibility of inclusion of the prior beliefs about the parameter into the estimation process is often 
seen as an important advantage over the standard estimation techniques, it is also the main target of criticism 
of the Bayesian models. The fact that individuals form various prior views about the parameter of interest, 
may result in substantially different posterior distribution which raises the question of consistency of the ap-
proach.

Often, a Bayesian model is conveniently defined by the posterior distribution belonging to the same fam-
ily as the prior. A well known example is the conjugate Normal-Gamma prior in the normal linear regression 
model. In other words, if normal prior is assumed for regression coefficients and gamma prior for noise vari-
ance, the marginal posteriors for coefficients and the variance are normally and gamma distributed as well. 
This can be readily seen from (1) and the form of the likelihood function of a Gaussian linear model. In this 
case the theoretical properties of the posterior are all we need to make an inference about the parameters. 
Although the whole posterior distribution carries the information about the parameter to be estimated it is a 
single point estimate that is typically of interest for applications. A usual choice for a point estimate is a simple 
posterior mean estimator, that is, the expectation of posterior distribution.

However, in many cases the posterior is easily calculated up to the constant only and 
f f fD D\b b b^ ^ ^h h h may be the best guess about the posterior. The reason for that is typically the fact 

that the normalising constant is very difficult to derive analytically via high-dimensional integration. Moreover, 
the posterior need not to belong to any of the standard probability distributions and the exact inference on the 
posterior becomes very difficult. Traditionally, this has been the main drawback of many Bayesian models and 
their application. The Markov Chain Monte Carlo methods (MCMC) have proved to be very efficient in pro-
viding the solution for the problem by using the simulations.



APPENDIX

Estimating Credit Migration Matrices with Aggregate Data – Bayesian Approach

19

Markov Chain Monte Carlo methods

The Markov Chain Monte Carlo methods (MCMC) are designed to draw a random sample from a dis-
tribution that may be known up to the normalising constant only. The basic idea underlying the MCMC is to 
simulate a path of a Markov Chain that has a distribution of interest as its limiting distribution. In terms of 
expression (1) it is sufficient to simulate a chain that converges to f Db^ h. In this way, under relatively mild 
conditions (see Robert and Casella 2004 for details), a sufficiently long simulated path of a Markov Chain may 
be seen as a sample from that distribution. Although the exact inference about the posterior might not be con-
venient, an approximate sample from the distribution of interest may often be drawn via MCMC and all the 
sample statistics can easily be obtained. It is important to note that the sample produced by MCMC is a tra-
jectory of a Markov Chain and, accordingly, cannot be seen as a series of independent draws from a limiting 
distribution. Still, an ergodic Markov chain, under some additional assumptions, inherits all the good properties 
from the Law of large numbers (LLN) and the Central limit theorem (CLT) and, hence, all the sample statistics 
are well behaved.

The MCMC methods originate from the Metropolis algorithm (Metropolis and Ulam 1949) as an attempt 
of a group of physicists to calculate complicated integrals via simulations. Building on this algorithm, the two 
flagship MCMC methods are constructed, the Metropolis-Hastings algorithm and, finally, its special case, the 
Gibbs sampler (see Geman and Geman 1984).

Convergence diagnostics and conditional posteriors

The reliability of Bayesian estimators heavily depends on two factors. First, the dispersion of posterior 
distribution is important as it indicates the precision of the estimates. The smaller the variance, more confi-
dent we are about the Bayesian estimates. Second, the Bayesian estimators rely on the Gibbs draws under the 
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Figure 2 Running means of full conditionals for regression coefficients. For each series the means calculated over 
the whole sample are represented by a full line.
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9 In order to check the sensitivity of the posterior sample statistics to the specification of the initial states, the sampler was started from different points 
from the support of the posterior. Sample statistics would converge quickly for different initial points.

10 In an interesting discussion Charles Geyer (Geyer’s web page) explains why and when burn-in is unnecessary. Burn-in is only one method, and not a 
particularly good method, of finding a good starting point. The name burn-in comes from electronics. Many electronics components fail quickly. Those that 
don’t are a more reliable subset. So a burn-in is done at the factory to eliminate the worst ones. Markov chains don’t work the same way. Markov chain fail-
ure (nonconvergence) is different from electronic component failure. Running longer may cure the first, but a dead transistor is dead forever. Thus burn-in is 
a bad term in MCMC, but there’s more wrong than just the word, there’s something fishy about the whole concept...

assumption that the underlying chain has indeed converged towards the posterior distribution. The easiest way 
to check this is by inspecting the graphs of the running means over time.

In order to check the speed of convergence of our sampler towards the stationary distribution, Figure 2 
compares the running means of posterior draws for transition probabilities with the means calculated over the 
whole sample. For all the parameters, running means are close to the overall mean, after only few hundreds of 
iterations. It is apparent how averages depend heavily on the initial state of the chain.9 Therefore, a so called 
burn-in sample consisted of the starting draws is often discarded from further analysis. Clearly, throwing away 
some iterations at the beginning of an MCMC run is just another way to initialise a chain, by using the point 
that is more likely to be drawn from the posterior. However, discarded values are possible outcomes from 
the posterior as well, but not in the very short run. Instead of simply throwing away the initial observation of 
a chain, in this paper, somewhat longer MCMC sequences are considered and initial realisations do not af-
fect sample statistics of the posterior draws. Initial observations are, therefore, not discarded from the analy-
sis.10
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