Why do I care? 00000	The model 000	Results 000000000000	Summary	Appendix

Do long-term interest rates drive GDP and inflation in Small Open Economies? Evidence from Poland $^{\rm 1}$

Grzegorz Wesołowski*

*Narodowy Bank Polski and Warsaw School of Economic

Young Economists Seminar, Dubrovnik 2016

¹The views expressed herein are those of the author and not necessarily those of Narodowy Bank Polski or the Warsaw School of Economics.

Why do I care? 00000	The model 000	Results 000000000000	Summary	Appendix

- Motivation
- What is this research about?

The model

- Overview
- Households

- Estimation
- The role of the term premium shock
- Short versus long term interest rates
- The role of the term premium

Source: New York Fed (the term premium in the US), my estimation based on Adrian et al (2013; the term premium in Poland)

(日) (四) (日) (日) (日)

Why do I care? ○●○○○	The model 000	Results 0000000000000	Summary	Appendix
Motivation				
E.g. QE pro SOEs	grams had	a simultanuos i	mpact on man	у

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Does the term premium affect economic dynamics/ shock propagation?

- Does it impact the volatility of other macro variables?
- Some attempts have been made w.r.t. large closed economies (see e.g. Kiley 2012, Andres, Lopez-Salido & Nelson, 2004, Chen et al 2012, Falgiarda, 2012)
- Recently also other economists have started investigating the QE effects on the ROW (Alpanda & Kabaca, 2015)
- but...

- Does the term premium affect economic dynamics/ shock propagation?
- Does it impact the volatility of other macro variables?
- Some attempts have been made w.r.t. large closed economies (see e.g. Kiley 2012, Andres, Lopez-Salido & Nelson, 2004, Chen et al 2012, Falgiarda, 2012)
- Recently also other economists have started investigating the QE effects on the ROW (Alpanda & Kabaca, 2015)
- but...

- Does the term premium affect economic dynamics/ shock propagation?
- Does it impact the volatility of other macro variables?
- Some attempts have been made w.r.t. large closed economies (see e.g. Kiley 2012, Andres, Lopez-Salido & Nelson, 2004, Chen et al 2012, Falgiarda, 2012)
- Recently also other economists have started investigating the QE effects on the ROW (Alpanda & Kabaca, 2015)

• but...

- Does the term premium affect economic dynamics/ shock propagation?
- Does it impact the volatility of other macro variables?
- Some attempts have been made w.r.t. large closed economies (see e.g. Kiley 2012, Andres, Lopez-Salido & Nelson, 2004, Chen et al 2012, Falgiarda, 2012)
- Recently also other economists have started investigating the QE effects on the ROW (Alpanda & Kabaca, 2015)
- but...

Why do I care? ○○○●○	The model 000	Results 000000000000	Summary	Appendix
Motivation				

SOEs differ from large closed economies

- Long term interest rates may impact the exchange rate
- They may be driven by other variables: e.g. external debt

Correlations between term premia and international investment positions to GDP

	correlation	p-value (H0: no correlation)	
Czech Republic	-0.45	0.01	
Hungary	-0.05	0.73	
South Korea	-0.37	0.01	• Evidence for the EA
Poland	-0.58	0.00	
Sweden	-0.09	0.50	
Australia	0.27	0.04	
New Zealand	-0.32	0.02	

I attempt to estimate the impact of changes in LR on GDP and inflation in Poland

• I bulid on DSGE literature for large closed economies.

- Deviations from the EH are introduced through investor segmentation and transaction/adjustment costs.
- Assets are assumed to be imperfect substitutes (in line with Preferred habitat hypothesis; Vayanos, Vila, 2009)
- I estimate the model with the Polish data
- I analyze the impact of the term premium on economic dynamics

 Why do I care?
 The model occ
 Results occool
 Summary
 Appendix

 What is this research about?
 I attempt to estimate the impact of changes in LR on GDP

and inflation in Poland

- I bulid on DSGE literature for large closed economies.
- Deviations from the EH are introduced through investor segmentation and transaction/adjustment costs.
- Assets are assumed to be imperfect substitutes (in line with Preferred habitat hypothesis; Vayanos, Vila, 2009)
- I estimate the model with the Polish data
- I analyze the impact of the term premium on economic dynamics

 Why do I care?
 The model occord
 Results occord
 Summary
 Appendix

 What is this research about?
 I attempt to estimate the impact of changes in LR on GDP

and inflation in Poland

- I bulid on DSGE literature for large closed economies.
- Deviations from the EH are introduced through investor segmentation and transaction/adjustment costs.
- Assets are assumed to be imperfect substitutes (in line with Preferred habitat hypothesis; Vayanos, Vila, 2009)
- I estimate the model with the Polish data
- I analyze the impact of the term premium on economic dynamics

 Why do I care?
 The model oco
 Results oco
 Summary
 Appendix

 What is this research about?
 I attempt to estimate the impact of changes in LR on GDP

and inflation in Poland

- I bulid on DSGE literature for large closed economies.
- Deviations from the EH are introduced through investor segmentation and transaction/adjustment costs.
- Assets are assumed to be imperfect substitutes (in line with Preferred habitat hypothesis; Vayanos, Vila, 2009)
- I estimate the model with the Polish data
- I analyze the impact of the term premium on economic dynamics

 Why do I care?
 The model occord
 Results occord
 Summary
 Appendix

 What is this research about?
 I attempt to estimate the impact of changes in LR on GDP

and inflation in Poland

- I bulid on DSGE literature for large closed economies.
- Deviations from the EH are introduced through investor segmentation and transaction/adjustment costs.
- Assets are assumed to be imperfect substitutes (in line with Preferred habitat hypothesis; Vayanos, Vila, 2009)
- I estimate the model with the Polish data
- I analyze the impact of the term premium on economic dynamics

Why do I care? 00000	The model ●○○	Results 000000000000	Summary	Appendix
Overview				
Main features				

- An open-economy model with two types of households, firms, the government and the central bank.
- Many standard features for this kind of models:
 - Monopolistic competition, sticky prices and the Taylor rule.
 - Impact of the foreign economy
- Not standard: the mechanism that allows long-term interest rates to deviate from the Expectation Hypothesis.

- An open-economy model with two types of households, firms, the government and the central bank.
- Many standard features for this kind of models:
 - Monopolistic competition, sticky prices and the Taylor rule.
 - Impact of the foreign economy
- Not standard: the mechanism that allows long-term interest rates to deviate from the Expectation Hypothesis.

- An open-economy model with two types of households, firms, the government and the central bank.
- Many standard features for this kind of models:
 - Monopolistic competition, sticky prices and the Taylor rule.
 - Impact of the foreign economy
- Not standard: the mechanism that allows long-term interest rates to deviate from the Expectation Hypothesis.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- An open-economy model with two types of households, firms, the government and the central bank.
- Many standard features for this kind of models:
 - Monopolistic competition, sticky prices and the Taylor rule.
 - Impact of the foreign economy
- Not standard: the mechanism that allows long-term interest rates to deviate from the Expectation Hypothesis.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- An open-economy model with two types of households, firms, the government and the central bank.
- Many standard features for this kind of models:
 - Monopolistic competition, sticky prices and the Taylor rule.
 - Impact of the foreign economy
- Not standard: the mechanism that allows long-term interest rates to deviate from the Expectation Hypothesis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why do I care? 00000	The model ○●○	Results 000000000000	Summary	Appendix
Households				
Overview				

- HH have access to three type of bonds: domestic short-term (DST), domestic long-term (DLT) and foreign long-term (FLT).
- There are two types of households:
 - unrestricted HH: access to all types of assets, pay transaction and adjustment costs.
 - restricted HH: access only to domestic long-term bonds.

	Unrestricted Households	Restricted Hoseholds
DST	\checkmark	
DLT	\checkmark	\checkmark
FLT	\checkmark	

Why do I care? 00000	The model ○●○	Results 000000000000	Summary	Appendix
Households				
Overview				

- HH have access to three type of bonds: domestic short-term (DST), domestic long-term (DLT) and foreign long-term (FLT).
- There are two types of households:
 - unrestricted HH: access to all types of assets, pay transaction and adjustment costs.
 - restricted HH: access only to domestic long-term bonds.

	Unrestricted Households	Restricted Hoseholds
DST	\checkmark	
DLT	\checkmark	\checkmark
FLT	\checkmark	

Why do I care? 00000	The model ○●○	Results 000000000000	Summary	Appendix
Households				
Overview				

- HH have access to three type of bonds: domestic short-term (DST), domestic long-term (DLT) and foreign long-term (FLT).
- There are two types of households:
 - unrestricted HH: access to all types of assets, pay transaction and adjustment costs.
 - restricted HH: access only to domestic long-term bonds.

	Unrestricted Households	Restricted Hoseholds
DST	\checkmark	
DLT	\checkmark	\checkmark
FLT	\checkmark	

Crucial features of the model

 No arbitrage opportunities between domestic long-term and short-term bonds require returns on them to be equal. This leads (after log-linearization) to the term structure condition:

$$r_{L,t} = E_t \frac{1}{L} \sum_{i=0}^{i=L-1} r_{t+i} + \iota(d_t^{U*} + q_t) + \zeta_{RL,t}$$

 In turn, no arbitrage between domestic long-term bonds and foreign long-term bonds implies the UI(D)P condition (after log-lin):

$$r_{t} - r_{t}^{*} = E_{t}q_{t+1} - q_{t} + E_{t}\pi_{t+1} - E_{t}\pi_{t+1}^{*} + \rho_{t} + \tau(d_{t}^{U*} + q_{t})$$
$$\rho_{t} = \varrho_{Q}(q_{t} + d_{t}^{U*} - gdp_{t}) + \zeta_{Q,t}$$

• Hence, when the debt rises, domestic currency tends to depreciate.

This form of the term structure and the UI(D)P are crucial in the model.
 Both are my value added.

Crucial features of the model

• No arbitrage opportunities between domestic long-term and short-term bonds require returns on them to be equal. This leads (after log-linearization) to the term structure condition:

$$r_{L,t} = E_t \frac{1}{L} \sum_{i=0}^{i=L-1} r_{t+i} + \iota(d_t^{U*} + q_t) + \zeta_{RL,t}$$

- In turn, no arbitrage between domestic long-term bonds and foreign long-term bonds implies the UI(D)P condition (after log-lin):

$$\begin{aligned} r_t - r_t^* &= E_t q_{t+1} - q_t + E_t \pi_{t+1} - E_t \pi_{t+1}^* + \rho_t + \tau (d_t^{U*} + q_t) \\ \rho_t &= \varrho_Q (q_t + d_t^{U*} - gdp_t) + \zeta_{Q,t} \end{aligned}$$

- Hence, when the debt rises, domestic currency tends to depreciate.
- This form of the term structure and the UI(D)P are crucial in the model.
 Both are my value added.

Crucial features of the model

• No arbitrage opportunities between domestic long-term and short-term bonds require returns on them to be equal. This leads (after log-linearization) to the term structure condition:

$$r_{L,t} = E_t \frac{1}{L} \sum_{i=0}^{i=L-1} r_{t+i} + \iota(d_t^{U*} + q_t) + \zeta_{RL,t}$$

- In turn, no arbitrage between domestic long-term bonds and foreign long-term bonds implies the UI(D)P condition (after log-lin):

$$\begin{aligned} r_t - r_t^* &= E_t q_{t+1} - q_t + E_t \pi_{t+1} - E_t \pi_{t+1}^* + \rho_t + \tau (d_t^{U*} + q_t) \\ \rho_t &= \varrho_Q (q_t + d_t^{U*} - gdp_t) + \zeta_{Q,t} \end{aligned}$$

- Hence, when the debt rises, domestic currency tends to depreciate.
- This form of the term structure and the UI(D)P are crucial in the model. Both are my value added.

Why do I care? 00000	The model 000	Results ●00000000000	Summary	Appendix
Estimation				
Overview				

- The QE programs affected GDP and prices in Poland moderately.
- Short term interest rates have 5.1-fold stronger impact on GDP in Poland than long term rates.
- The term premium has stabilized GDP and inflation in Poland.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why do I care? 00000	The model 000	Results ●00000000000	Summary	Appendix
Estimation				
Overview				

- The QE programs affected GDP and prices in Poland moderately.
- Short term interest rates have 5.1-fold stronger impact on GDP in Poland than long term rates.
- The term premium has stabilized GDP and inflation in Poland.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why do I care? 00000	The model 000	Results ●00000000000	Summary	Appendix
Estimation				
Overview				

- The QE programs affected GDP and prices in Poland moderately.
- Short term interest rates have 5.1-fold stronger impact on GDP in Poland than long term rates.
- The term premium has stabilized GDP and inflation in Poland.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Why do I care? 00000	The model	Results o●ooooooooooo	Summary	Appendix
Estimation				
Baseline estin	nation			

- Data for Poland and the euro area
- 2004Q1 2014Q2
- Bayesian methods, relatively uninformative priors
- 9 time series: GDP, 2 int rates, consumption, inflation, REER, GDP_ea, R_ea, Inf_ea
- 9 shocks: productivity, time preference, country risk premium, export preference, monetary policy, term premium, 3 shocks in foreign VAR.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results

The role of the term premium shock

Shock decomposition: term premium

• The tp shock accounts for 0.3% of inflation volatility

三 のへの

Short versus long term interest rates

Long and short interest rates drops that lead to an equal cumulated rise in output gap

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Why do I care? 00000	The model	Results ○○○○○●○○	0000	Summary		Appendix
The role of the term premium						
The term prer	nium has	stabilized	GDP	and inflation	in	
Poland						

[percentage points]	GDP	π	r	rL	q
Baseline simulation	1.00	0.56	0.37	0.34	4.62
Benchmark simulation	1.50	0.56	0.40	0.07	3.81

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Deviations from the EH: impact on historical output gap

Deviations from the EH: impact on historical inflation gap

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Why do I care? 00000	The model 000	Results ○○○○○○○○○○○○	Summary	Appendix
The role of the term premium				
The term prer	nium has sta	bilized GDP and	d inflation in	
Poland				

Shock name:	GDP	π	
Time preference	\uparrow	\leftrightarrow	
Risk premium	\downarrow	\leftrightarrow	
Export preference	\downarrow	\leftrightarrow	
Productivity	\leftrightarrow	\leftrightarrow	
Monetary policy	\leftrightarrow	\leftrightarrow	

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

Deviations from the EH: impact on time preference shock

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Deviations from the EH: impact on export preference shock

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Deviations from the EH: impact on risk premium shock

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Why do I care? 00000	The model 000	Results 000000000000	Summary	Appendix
My contribu	ition			

- I capture the fact that LR may deviate from the EH also in SOE in the SOE NK model
- I estimate a DSGE model with this feature for Poland and show that the term premium has stabilized GDP and inflation in Poland
- I show that long term rates impact GDP 5.1-times weaker than short term rates
- I show that the QE programs did not affect Polish economy.

Why do I care? 00000	The model	Results 000000000000	Summary	Appendix
My contribut	ion			

- I capture the fact that LR may deviate from the EH also in SOE in the SOE NK model
- I estimate a DSGE model with this feature for Poland and show that the term premium has stabilized GDP and inflation in Poland
- I show that long term rates impact GDP 5.1-times weaker than short term rates
- I show that the QE programs did not affect Polish economy.

Why do I care? 00000	The model 000	Results 000000000000	Summary	Appendix
My contribu	ition			

- I capture the fact that LR may deviate from the EH also in SOE in the SOE NK model
- I estimate a DSGE model with this feature for Poland and show that the term premium has stabilized GDP and inflation in Poland
- I show that long term rates impact GDP 5.1-times weaker than short term rates
- I show that the QE programs did not affect Polish economy.

Why do I care? 00000	The model 000	Results 000000000000	Summary	Appendix
My contribu	tion			

- I capture the fact that LR may deviate from the EH also in SOE in the SOE NK model
- I estimate a DSGE model with this feature for Poland and show that the term premium has stabilized GDP and inflation in Poland
- I show that long term rates impact GDP 5.1-times weaker than short term rates

• I show that the QE programs did not affect Polish economy.

Why do I care? 00000	The model 000	Results 000000000000	Summary	Appendix
My contribu	tion			

- I capture the fact that LR may deviate from the EH also in SOE in the SOE NK model
- I estimate a DSGE model with this feature for Poland and show that the term premium has stabilized GDP and inflation in Poland
- I show that long term rates impact GDP 5.1-times weaker than short term rates
- I show that the QE programs did not affect Polish economy.

Why do I care?	I he model	Results	Summary	Appendix

Expectations hypothesis and Fama-Bliss estimation

- EH can be formulated in two equivalent ways:
 - Long maturity yield = average of expected future short rates (plus risk premium)

$$y_0^{(N)} = rac{1}{N} \mathcal{E}(y_0^{(1)} + y_1^{(1)} + y_2^{(1)} + ...y_{N-1}^{(1)})(+riskpremium)$$

• Forward rate = expected future spot rate (plus risk premium)

$$f_t^{(N)} = E_t[y_{t+N-1}^{(1)}](+riskpremium)$$

 In Fama-Bliss estimation we checked whether second equation holds, by doing a simple regression:

$$y_{t+N-1}^{(1)} - y_t^{(1)} = a + b(f_t^{(N)} - y_t^{(1)}) + \epsilon_{t+1}$$

- if b=1 then EH holds 1% higher forward rate implies 1% higher yield in the future.
- We showed that b is close to 1 only for period up to 1 year.
- Therefore, as both formulation of EH are equivalent, long-term rates are not composition of short-term rates above one year period.

Fama-Bliss estimation: results for Poland

Time horizon	OLS		GMM	
(N [years])				
	<i>b</i> estimate	90% confidence interval for <i>b</i>	<i>b</i> estimate	90% confidence interval for <i>b</i>
2	1.339	(1.053; 1.625)	1.168	(0.611; 1.726)
4	0.234	(-0.110; 0,579)	0.034	(-0.460; 0.528)

Appendix

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation

Long-term interest rates and NFA to GDP in 2013 in the EA

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Why do I care?	The model	Results	Summary	Appendix

The term premium shock

Crucial features of the model

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙