Currency Unions and Trade: A Post-EMU Reassessment

Reuven Glick Federal Reserve Bank of San Francisco

Andrew K. Rose University of California at Berkeley-Haas, CEPR, NBER

22nd Dubrovnik Economic Conference, organized by Croatian National Bank, June 12-14, 2016

Disclaimer: Any opinions expressed here do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or of the Board of Governors of the Federal Reserve System

Motivation

- Glick-Rose (2002) used panel approach to investigate effect of currency unions on trade, using data for 1948-1997 before establishment of EMU
 - Found currency unions increase trade by ~90%
- Current paper uses data for 1948-2013 and asks
 - 1. What is effect of EMU on trade?
 - 2. Do advances in methodology matter?

Costs and Benefits of Joining a Currency Union

Costs

- Loss of nominal exchange rate as policy tool
- Loss of national monetary policy control

Benefits

- □ Greater transparency of prices encourages greater competition, efficiency, and more trade
- Reduced currency risk encourages more trade and investment

Debate in Literature on Magnitude of Trade Effect of CUs

- □ It's big, 90-100%.
 - e.g. Glick and Rose (2002), Frankel (2010)
- □ It's moderate, 40-50%
 - e.g. Eicher and Henn (2011)
- □ It's small for the EMU, 0-20%
 - e.g. Micco et al (2003), Bun and Klaasen (2002, 2007), de Nardis and Vicarelli (2003), Flam and Nordstrom (2007), Berger and Nitsch (2008), Camarero et al (2013)
- EMU effect might even be negative
 - e.g. Baldwin and Taglioni (2007)

Preview of Findings

1. Econometric methodology matters

- 2. Time and country span of sample also matters
- EMU different from other CUs: Increases trade among EMU countries by ~40% to 50%

Measuring Trade Effects: "Old" Methodology Gravity Model

In(Trade_{ijt}) =
$$\gamma$$
CU_{ijt} + β Z_{ijt} + { δ _t} + ϵ _{ijt}

- Trade_{ijt} = average nominal value of bilateral trade between i and j at time t,
- Z = gravity control variables, usual suspects: e.g.
 GDP, distance, common language, border, regional RTA, colonial history, etc. ...
- CU = 1 if i and j use the same currency at time t and 0 otherwise,
- $\{\delta_t\}$ = year-specific effects

Methodological Issues in Estimating γ

- □ Trade depends not just on bilateral factors, but also on trade with 3rd countries through "multilateral resistance" and general equilibrium effects.
- Treating all currency unions alike implicitly presumes homogeneity
- Existence of omitted variables

Measuring Trade Effects Newer (Export) Gravity Models

- Do "theory-consistent" gravity estimation
- Use Least Squares with <u>time-varying</u> country dummy variables to control for multilateral resistance and other general equilibrium effects:

$$ln(Exports_{ijt}) = \gamma CU_{ijt} + \beta Z_{ijt} + \{\lambda_{it}\} + \{\psi_{jt}\} + \epsilon_{ijt}$$

- Exports_{ijt} = nominal value of <u>bilateral exports</u> from i to j at time t,
- $\{\lambda_{it}\}$ = set of <u>time-varying</u> exporter dummy variables,
- $\{\psi_{jt}\}$ = set of <u>time-varying</u> importer dummy variables
- \Box Relax assumption that γ is same for all CUs

Data Set

- □ IMF DoTS trade: >200 "countries" 1948-2013 (with gaps) giving almost 900,000 observations
- □ Population, real GDP: WDI > PWT > IFS
- Country Characteristics: World Factbook
- Regional Trade Agreements (RTAs): WTO
- Currency Unions: Glick-Rose updated
 - 1:1 par for extended period of time (not just hard fixes)
 - Transitive: x-y and y-z imply x-z

Why We Want a Large Data Set

A large data set – spanning both countries and time

- Provides many degrees of freedom
- Allows direct comparison of effects of individual CUs, such as EMU, with others.

Gravity γ Estimates for Exports with country-year effects for exporter & importer

	All CUs	With non-EMU and EMU CUs	
		dis-aggregated	
All CUs	.51(.02)		
All Non-EMU CUs		.76 (.02)	
AII EMU	Implausible!!!65 (.03)		
Sample period	1948-2013	1948-2013	
#Obs.	879,794	879, 794	
#Country-year effects	22,438	22,438	

Note: Other gravity regressors and year dummies included, but not reported.

Robust standard errors in parentheses.

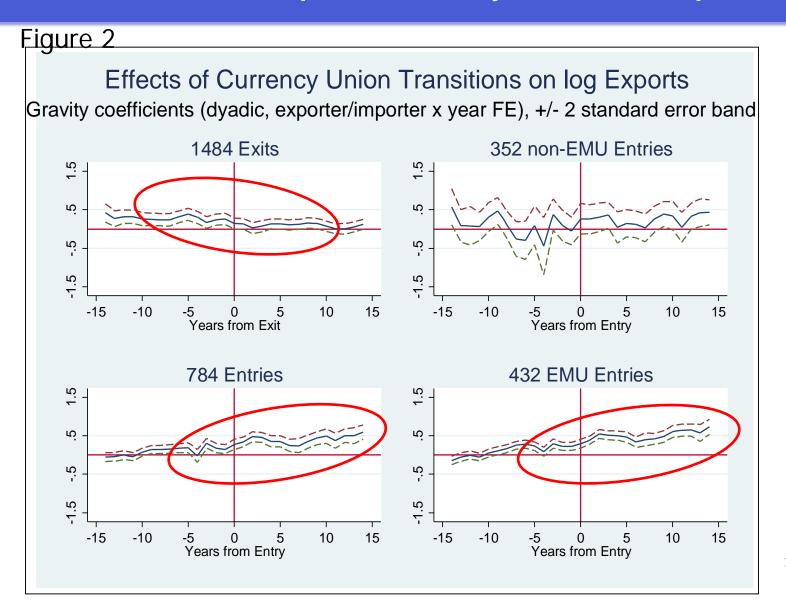
Prefer (With-in) Fixed Pair Effect Estimator

- Exploits variation over time, answers the policy question of interest, i.e. the (time series) question
 - "What is the trade effect of a country joining (or leaving) a currency union?"
- Controls for unobserved pair effects, including potential endogeneity of currency union

Gravity γ Estimates for Exports with country-year effects for exporter & importer & country pair FE

	All CUs	With non-EMU and EMU CUs
		dis-aggregated
All CUs	.34 (.02)	
All Non-EMU CUs		.30 (.03)
EMU	$e^{.43} - 1 \sim 54\%$	← (.43 (.02)
Sample period	1948-2013	1948-2013
#Obs.	879,794	879,794
#Country-year effects	22,438	22,438
#Pair FE	33,886	33,886

13


Dynamic Effects of EMU and other CUs

- Add (14) leads and lags around time of currency union exit/entry
 - i.e. Add $\Sigma_k \theta_k CUENTRY_{ijt-k} + \Sigma_k \phi_k CUEXIT_{ijt-k}$ to gravity equation
- Permits estimation of how effect of CU entry and exit varies over time

 Allows testing whether magnitudes of effects of CU exits and entries are symmetric

Allowing Dynamic Effects, CU exit lowers exports, entry raises exports

Sensitivity Analysis

- 1. Dis-aggregate other CUs
- 2. Vary country and sample period
- 3. Disaggregate EMU effect, i.e. distinguish between "old" and "new" members
- 4. Take account of role of regional trade arrangements (RTAs), such as EU

1. Dis-aggregating Other CUs: Gravity γ Estimates for Exports

	γ	γ
EMU	.43** (.02)	.43** (.02)
Other CUs	.30** (.03)	10 (.06)
CFA Franc		.58** (.10)
ECCU \$		1.64** (.11)
Aussie \$.39 (.20)
Brit. £		.55** (.03)
French Franc		.87** (.08)
Indian Rupee		.52** (.11)
US\$		05 (.06)

17

	1948-2013	1995-2013	1948-2005	1985-2005	1995-2005
	.43** (.02)	.47** (.03)	.18** (.03)	.18** (.03)	.18** (.04)
All Countries	[879,794]	[424,230]	[691,074]	[386,653]	[235,510]
Upper Income	.11** (.03)	.16** (.03)	02 (.04)	01 (.04)	09* (.04)
Countries (GDP p/c>\$12,736)	[75,468]	[45,401]	[52,103]	[35,865]	[22,036]
Industrial	01 (.02)	.04 (.02)	09** (.03)	16**(.03)	07 (.04)
Countries + Present/future EU	[73,253]	[26,763]	[61,939]	[27,570]	[15,449]
Present/future EU	27** (.02)	04 (.02)	31** (.04)	29**(.03)	10** (.03)
	[30,731]	[13,337]	[25,115]	[12,230]	[7,721]

Note: dependent variable is log exports. Other gravity regressors, country-year and pair dummies included, but not reported. Robust standard errors in parentheses; no. of obs. in brackets.

3. Disaggregating EMU, and 4. Role of Regional Trade Agreements, like EU

 EMU has many "new" members, i.e. post 2006entrants

- Many countries joined European Union (EU) in years prior to when joined EMU, e.g. 2004 "Enlargement"
- What is effect of disaggregating EMU and EU membership by distinguishing between "old" and "new" members?

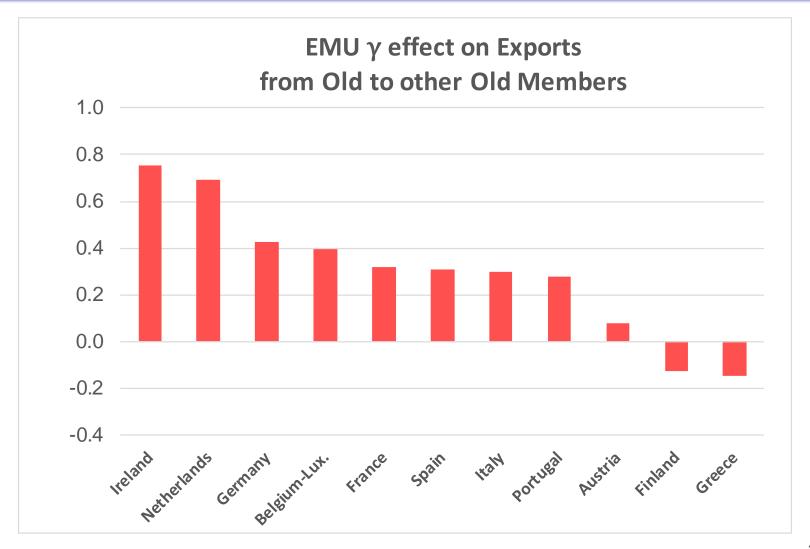
Chronology of Membership in EU and EMU

Old Members

New Members

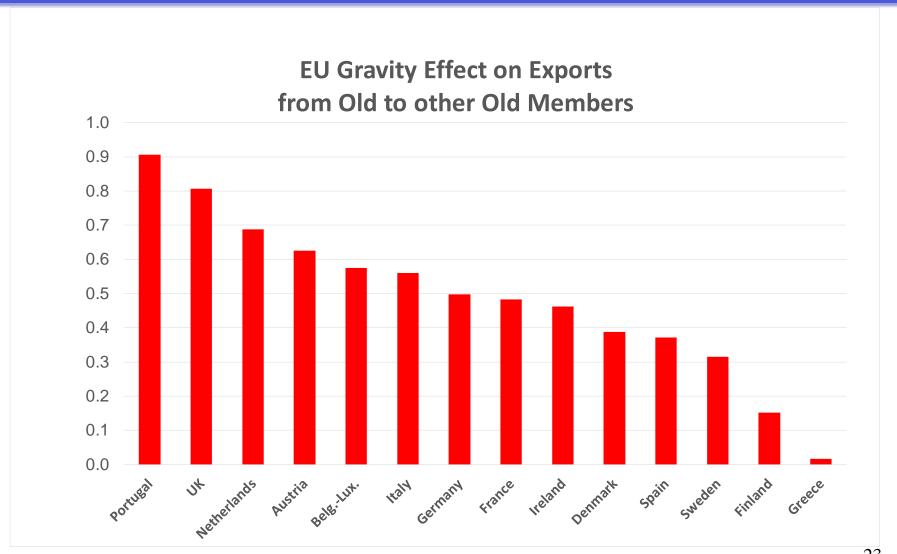
	Joined EU	Joined EMU
Belgium	1951	1999
France	1951	1999
Germany	1951	1999
Italy	1951	1999
Luxembourg	1951	1999
Netherlands	1951	1999
Ireland	1973	1999
UK	1973	
Denmark	1973	
Greece	1981	2001
Portugal	1995	1999
Austria	1995	1999
Finland	1995	1999
Spain	1995	1999
Sweden	1995	

	Joined EU	Joined EMU
Slovenia	2004	2007
Cyprus	2004	2008
Malta	2004	2008
Slovakia	2004	2009
Estonia	2004	2011
Latvia	2004	2014
Lithuania	2004	2015
Czech Rep.	2004	
Poland	2004	
Hungary	2004	
Romania	2007	
Bulgaria	2007	
Croatia	2013	


3. Disaggregating EMU and EU effects Gravity γ and RTA Estimates

	EMU	EMU	EMU
		Dis-agg.	Dis-agg.
			& RTA Dis-agg
Non-EMU CUs	.30 (.03)	.30 (.03)	.30 (.03)
EMU	.43 (.02)		
Old-Old EMU		.37 (.02)	.33 (.02)
New-New EMU		1.03 (.11)	.39 (.11)
Old-New EMU		.56 (.04)	08 (.04)
All RTAs	.39 (.01)	.39 (.01)	
Non-EU RTAs			.32 (.01)
Old-Old EU			.52 (.01)
New-New EU			1.58 (.04)
Old-New EU			1.29 (.02)

Note: Dependent variable is log exports. Other gravity regressors, French Dept. effects, country-year and pair dummies are included, but not reported.

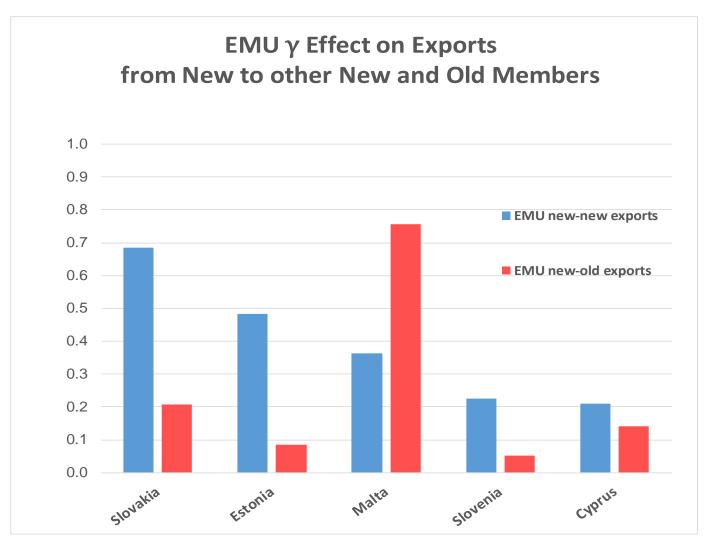

21

3. Disaggregating EMU effect by country: EMU effect varies across Old Members

Note: Estimates from gravity equation of (log) exports on gravity regressors, with country-year and pair dummies, and disaggregated EMU and RTA variables.

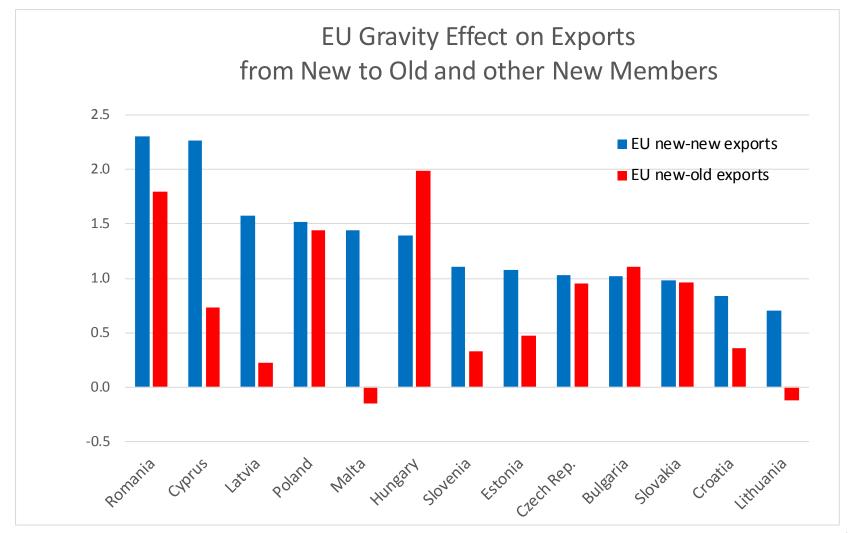
4. Disaggregating EU effect by country: EU effect varies across Old Members

Note: Estimates from gravity equation of (log) exports on gravity regressors, with country-year and pair dummies, and disaggregated EMU and RTA variables.



Conclusions

- Estimate gravity model specification, using panel >200 countries, 1948-2013, 15 EMU years
- Methodology and sample matter
 - Preferred methodology is panel with country-pair fixed effects
 - Preferred sample includes all countries
- EMU is different
 - EMU boosts trade by 40%- 50%
 - Other currency unions have different effects on trade
 - Only have short-time sample of EMU experience for newer (e.g. 2007-) members
- Regional trade agreements, like EU, also affect trade
 - Particularly strong for new members


Appendix Slides

Disaggregating EMU effect by country: EMU effect varies across New Members

Note: Estimates from gravity equation of (log) exports on gravity regressors, with country-year and pair dummies, and $\frac{26}{2}$ disaggregated EMU and RTA variables.

Disaggregating EU effect by country: EU effect varies across New Members

Note: Estimates from gravity equation of (log) exports on gravity regressors, with country-year and pair dummies, and 27 disaggregated EMU and RTA variables.

Symmetry Tests of Entry and Exits, Exports with pair FE

Table 6	F-stat (p value)	
After CU Entry = - After CU Exit?	.0 (.7 1)	Can't eject
Before CU Entry = - Before CU Exit?	.8 (.68)	Cject
Both	1.0 (.49)	
After non-EMU CU Entry = After EMU Entry?	1.0 (.17)	Can't eject
Before non-EMU CU Entry = Before EMU Entry?	1.4 (.16)	ејест
Both	2.8 (.00)	
After non-EMU CU Exit = - After EMU Entry?	.9 (.51)	

Table reports F-test statistic for Ho of identical slopes $\Sigma_k \theta_k$ $\Sigma_k \phi_k$ for given CU pairs and time periods

Currency Unions and Trade: A Post-EMU Reassessment

Reuven Glick Federal Reserve Bank of San Francisco

Andrew K. Rose University of California at Berkeley-Haas, CEPR, NBER

22nd Dubrovnik Economic Conference, organized by Croatian National Bank, June 12-14, 2016

Disclaimer: Any opinions expressed here do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or of the Board of Governors of the Federal Reserve System